I. Basics & Introduction to SOLIDWORKS

• Understanding the User Interface:

- FeatureManager Design Tree
- Command Manager
- View toolbar
- Mouse buttons and keyboard shortcuts
- File management
- System requirements and settings

• Parametric Design Concepts:

- Understanding design intent
- File references

• Basic Part Modeling Overview:

Feature-based modeling

II. Sketching

• 2D Sketching:

- Sketch entities (lines, circles, rectangles, arcs, splines, polygons, ellipses, slots, points, text)
- Sketch relations (geometric constraints like coincident, parallel, perpendicular, tangent, concentric, horizontal, vertical)
- Dimensions (smart, horizontal, vertical, ordinate)
- Sketch tools (trim, extend, offset, mirror, convert entities, linear/circular pattern, move, copy, rotate, scale, stretch)
- Fully defining sketches

• 3D Sketching:

o Introduction to 3D sketching for specialized applications

III. Part Modeling

• Basic Features:

- Extrude (Boss/Base and Cut)
- Revolve (Boss/Base and Cut)
- Fillet and Chamfer
- Hole Wizard (standard holes, threads)

• Reference Geometry:

o Creating planes, axes, coordinate systems, points

• Intermediate/Advanced Features:

- Sweep (Boss/Base and Cut with guide curves)
- Loft (Boss/Base and Cut with guide curves)
- o Rib
- Draft
- Shell
- Patterns (linear, circular, sketch-driven, curve-driven, fill pattern, mirror)

- Configuration and Design Tables (for creating variations of a part)
- Material Library & Assigning Material
- Calculating mass and other geometric properties
- Boolean operations (Combine, Split)
- Editing and modifying features
- Multi-body solids

IV. Assembly Modeling

• Getting Started with Assemblies:

- Assembly types (Top-Down, Bottom-Up)
- Inserting components
- FeatureManager Design Tree and symbols

Mates:

- Standard Mates (coincident, parallel, perpendicular, tangent, concentric, distance, angle, lock)
- Advanced Mates (symmetric, width, path mate, linear/linear coupler, limit mate)
- Mechanical Mates (cam, hinge, gear, rack pinion, screw, universal joint)

Manipulating Components:

- Moving and rotating components
- Replacing components
- Hiding components and controlling transparency

Assembly Tools:

- o Interference detection and collision detection
- Exploded views and explode lines
- Bill of Materials (BOM)
- Sub-assemblies
- Smart Fasteners
- Assembly patterns
- Assembly visualization

V. Generating Detail Drawings

• Drafting Overview:

- Drawing sheets and views
- Adding drawing views (model view, projected views, standard 3 view, auxiliary views, section views, detail views, broken-out section, crop view, alternate position view)

Annotations and Dimensions:

- Smart dimensioning
- Adding annotations, symbols, datum features, hole callouts, balloons
- Sheet formats and templates
- Tables (BOM, revision tables)

VI. Specialized Modules (often covered in advanced courses or as separate modules)

• Surface Modeling:

- o Introduction to surfacing tools (extrude, revolve, sweep, loft, offset surfaces)
- Filleting, trimming, extending, knitting surfaces
- Creating and manipulating complex organic shapes

• Sheet Metal Design:

- Sheet metal features (base flange, edge flange, miter flange, hem, jog, sketched bend)
- Forming tools
- Converting parts to sheet metal
- Flattening and unfolding for manufacturing

Weldments:

- o 3D sketching for weldment structures
- Structural members
- Trimming and extending members
- o Gussets, end caps
- Cut lists and weld beads

Mold Design:

- Core and Cavity design
- o Draft analysis, shut-off surfaces, parting lines

• Routing (Electrical/Piping and Tubing):

Creating routes for electrical cables, wires, pipes, and tubes

• Simulation (FEA/CFD):

- o SOLIDWORKS Simulation (basic structural analysis, stress, displacement)
- SOLIDWORKS Flow Simulation (fluid dynamics, thermal analysis)
- SOLIDWORKS Plastics (mold flow analysis)

• SOLIDWORKS PDM (Product Data Management):

Managing and controlling design data

SOLIDWORKS CAM:

Introduction to computer-aided manufacturing

• SOLIDWORKS Visualize/PhotoView 360:

Creating photorealistic renderings

This syllabus provides a solid foundation for anyone looking to learn and master SOLIDWORKS, from beginners to those aiming for professional certification.